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Abstract. Personal assistants (PAs) such as Amazon Alexa, Google
Assistant and Apple Siri are now widespread. However, without ade-
quate safeguards and controls their use may lead to privacy risks and
violations. In this paper, we propose a model for privacy-enhancing
PAs. The model is an interpretable AI architecture that combines 1)
a dialogue mechanism for understanding the user and getting online
feedback from them, with 2) a decision-making mechanism based on
case-based reasoning considering both user and scenario similarity.
We evaluate our model using real data about users’ privacy prefer-
ences, and compare its accuracy and demand for user involvement
with both online machine learning and other, more interpretable, AI
approaches. Our results show that our proposed architecture is more
accurate and requires less intervention from the users than existing
approaches.

1 Introduction

AI assistants such as Personal Assistants (PAs) have become a key
application of AI techniques. Over the last decade, they have become
widespread in our homes and our phones, including Amazon Alexa,
Google Assistant, Apple Siri, and so on. Despite their popularity and
the convenience and functionalities they offer to users, PAs have also
raised significant concerns regarding end users’ privacy [2, 16, 3].
PAs have a distinct working ecosystem of their own, which is com-
plicated and involves many different stakeholders [6, 2, 3]. For in-
stance, PAs depend on cloud service providers to store their data.
Additionally, to provide their vast range of services, they use both
built-in skills and third-party applications called skills [14, 5]. The
disadvantage of this complex ecosystem is that users’ personal infor-
mation may be accessed or misused by unauthorised parties without
the user’s awareness [44, 15, 10]. For instance, this may occur when
Spotify’s service provider accesses users’ login details while playing
music via Alexa [6], and everyone within audible range may know
the status of a smart door lock [34].

Most PA users have inaccurate mental models of the interactions
between the different stakeholders in a PA’s ecosystem and lack ad-
equate mechanisms to take control of their privacy [2]. At the same
time, when those interactions are made apparent to users and promis-
ing privacy protection mechanisms suggested in previous studies are
given to them, such as access control mechanisms [50], those mech-
anisms end up not being utilized in practice because users find it too
burdensome [50]. In particular, although all users in a previous study
wanted to have protection mechanisms and wanted to exert control
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over the flows of information, they did not want to spend the time set-
ting the mechanisms up because it was considered inconvenient [50].
Instead, they expected the PA to quickly learn what the social norms
regarding privacy were while intervening the least possible. This is
in line with the consent fatigue described in the literature and the
need for novel automated consent methods in assistants [38]. How-
ever, and as one might expect, previous research [51] found that the
more opportunities to learn the more accurate information sharing
decisions, so it seems crucial to make the most of the very limited
interactions one may have with a user to learn what their privacy
preferences may be.

Recent user studies have actually focused on how users would like
assistants to help them manage their privacy [11]. When it comes
to the level of automation assistants should have, the study found
similar evidence to previous studies [50], i.e., that users would like
as much control as possible while intervening the least possible. In
addition, this general finding had some specific nuances, where users
would like to choose how much they will intervene and how much
their privacy is managed automatically. The study also found that
users should be given transparency about the decisions made and the
opportunity to review the decisions made for auditing the decisions.

We take the evidence of these previous studies as requirements
for the design of privacy-enhanced PAs [40, 42]. That is, PAs should
manage users privacy in a way in which they should learn users’
privacy preferences as much as possible from the user while mini-
mizing the burden on the user, that users should be given a choice of
how much they want to intervene, and that users should be given be
a level of transparency for the decisions made, i.e., the model should
be interpretable1, as well as the opportunity to review the decisions
made.

Based on these requirements, we present a novel model for
privacy-enhanced PAs with two key mechanisms: i) a Dialogue
Mechanism (DiM); and ii) a Decision making Mechanism (DeM).
The DiM aims to understand user preferences and improve the per-
formance of the PA with few interactions, by prioritizing the ques-
tions it poses to users. It also allows users to review PA’s decisions so
it can keep learning as it goes along. The DeM is a decision-making
mechanism that is loosely based on a Case-based Reasoning (CBR)
approach, where user and context similarity is used to pick the best

1 Note interpretable means the opposite to black-box [36], that is, a model that
is transparent about the decisions it takes and what they are based on. Note
also the difference with explainability, which is also a desirable property,
but out of the scope of this paper, as we do not focus on engineering the
exact and best explanations that would be given to users (nor the specific
social process needed for this [27]) based on an interpretable model, which
is a related but different problem [35].



decision for the current context and user (even if the context and the
user are unknown). The DeM is interpretable as it can provide the
most similar user and/or most similar context that led to a particular
decision. We show experimentally using a dataset from a user study
on privacy preferences for smart home PAs that the model performs
substantially better than other online learning approaches with little
user input, and particularly better than black-box alternatives.

2 Preliminaries
We follow the modern conceptualisation of privacy as dependent on
the context according to Contextual Integrity (CI) [32], i.e. the same
information flow may or may not lead to privacy violations, depend-
ing on the context. Contextual Integrity considers the following fac-
tors as determining the context that can make an information flow
more or less appropriate: (1) the sender of the information, (2) the
attribute or type of the information, (3) the subject of the information
that is being transferred, (4) the recipient of the information, and (5)
the transmission principles imposed on the transfer of the informa-
tion from the sender to the recipient. Based on Contextual Integrity
one can define and elicit privacy norms [8, 9], which are based on the
appropriateness of information flows in a particular context.

Definition 1 (Context). Given the set of Contextual Integrity pa-
rameters A, and, for each parameter a ∈ A, a domain Da of val-
ues for the parameter, we define a context c = ⟨v1, . . . , vk⟩, so that
vi ∈ Dai and k = |A|.

We exclude the parameter sender, as the sender is the PA, because
our model is for a PA to decide on the information flows it originates.
Since transmission principles in CI theory condition the flow of in-
formation from party to party, this may relate to several aspects of
transmission.

Example 1. Given the set of parameters A =
{data, subject, recipient, purpose}, the context c =
⟨location, user, PA_provider, security⟩ represents the case
where the PA sends the user’s location to the PA provider for
security reasons (e.g. to ensure the PA is connecting from a known
place).

Definition 2 (Privacy Norm). A privacy norm n is a tuple
⟨deontic, c⟩, where:

• deontic represents the deontic modality, namely Obligation (O),
Permission (P ) and Prohibition (F ).

• c is the context that the deontic modality applies to.

Example 2. Following the previous example, a privacy norm n that
regulates that it is permitted to send the user’s location to the PA
provider for security reasons can be represented as:

n = ⟨P, ⟨location, user, PA_provider, security⟩⟩

3 Privacy Enhanced Model (PEM)
In this paper, we propose a privacy-enhanced model to help PAs rea-
son about the best information-flow decision on different contexts,
including known cases and those cases the current user has not ex-
perienced before. To achieve this aim, the model loosely follows a
Case-based Reasoning [24] approach. The model has a knowledge
base (KB) of norms for each user, which contains what contexts they
would find appropriate for information flows to happen. This KB is

used by the decision making mechanism (DeM) in order to, when a
new context comes, retrieve and reuse (in CBR terminology) the best
norm to deal with the context based on user and context similarity.
The model also includes a dialogue mechanism (DiM), which allows
the user to revise decisions made and, where pertinent, retain them
in the KB (e.g. for when the PA is deployed the first time for a user).
The DiM also allows for a very lightweight first dialogue with a new
user not present in the KB. Next, we detail each of the components
— KB, DeM and DiM, which are summarized in Figure 1.
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Figure 1. The components of the Model. The KB contains the previous
cases. The DeM will make a decision once the PA needs to decide about a
new context. The DiM is triggered to converse with the user and update the
KB where pertinent.

3.1 Knowledge Base

Our model assumes a knowledge base that contains representations
of users and privacy norms that can be used to reason out decisions.
We formally define the knowledge base as follows.

Definition 3 (Knowledge Base). Given a set of users U , the Knowl-
edge Base is a set KB = {N1, . . . , Nm}, where Nu is the set of
norms of user u ∈ U and m = |U |.

3.1.1 KB Initialization

We assume that the knowledge base starts with a set of other users
and their norms before interacting with the current user. This can
be achieved by a range of methods, such as product manufactures
generating privacy norms that are based on user experience they have
gathered in the reviews of PAs already put into use, during the market
research phase, or based on user studies.

3.1.2 KB Update

When there are new norms to be added to the KB (based on the DiM
as explained later), the model checks whether the new norms to be
added conflict with a norm that already exists in the KB. In this pa-
per, we assume that a conflict arises when an action is simultaneously
prohibited and permitted/obliged, and its variables have overlapping
values.

Definition 4 (Norm Conflict). Given two norms n =
⟨Deonticn, cn⟩ and m = ⟨Deonticm, cm⟩. We say they are
in conflict, denoted as conflict(n,m) iff

Deonticn ̸= Deonticm ∧ cn = cm.



For instance, a conflict occurs between a prohibition and a permis-
sion if the for the same context. In this paper, as we follow an online
learning approach, that is, we want to be aligned with the user as we
learned from them, the most recent norm takes precedence over the
older norm if they are in conflict.

3.2 Decision Making Mechanism

The Decision making mechanism (DeM) is at the heart of the model’s
ability to guide the PA’s responses when it detects a context that re-
quires a decision. Once a context is to be considered by the model,
the DeM will be triggered to reason out a decision on whether the
action associated should be allowed to occur. Our model adapted the
four-step procedure (also known as the 4R cycle) of CBR [1], to ex-
ecute the whole decision-making process. The four-step procedure
consists of the steps retrieve, reuse, revise, and retain, which is iden-
tified as a proper way to apply CBR to an application [1].

3.2.1 Case Similarity

The decision-making process is inextricably linked to two similarity
functions. One is used to compute the similarity between two con-
texts (sc), and the other is to compute the similarity between two
users (su).

First, we start with the context similarity, which computes how
similar two contexts are by looking at how similar their parameters
are in turn.

Definition 5 (Context Similarity). Given two contexts c and d, their
similarity is:

sc(c, d) =

k∑
j=1

wj × simj(c.vi, d.vi) (1)

where k is, as before, the number of CI parameters, and wj is
the weight of the j-th parameter, which represents the importance of
parameter j, where

∑k
i=1 wi = 1. The function simj(·, ·) represents

the similarity between each pair of parameters. Note that simj(·, ·)
may be different depending on the parameter.

For instance, in this paper, in our experimental setup, we defined
simj(·, ·) based on empirical evidence of users. In particular, regard-
ing similarity simj(·, ·), we defined it as follows: 1) data type simi-
larity depends on the sensitivity level of data, so that the more similar
their sensitivity the more similar the data types are considered; 2) re-
cipient similarity depends on the relationship between the recipient
and the user, so the more similar the relationship the more similar the
recipient; 3) the similarity of the rest of the parameters simply looks
at how many of them are the same. Further details can be found in
the experimental section.

Regarding the weights of each parameter similarity wk, one could
automatically calculate that from the KB. For instance, one way to
do this is as we did for our experiments, where, using the KB, we
construct a regression model that considers as independent variables
the parameters that define contexts and then the deontic modality as
the independent variable. The coefficients of the regression model
for each parameter could then be used to set the different weights
wk. Further details can be found in the experimental section.

Next, we focus on the similarity between users, which depends on
the similarity between their norms (which, in turn, also depend on
context similarity as below).

Definition 6 (User Similarity). Given two users i and j, their simi-
larity is:

su(i, j) =
Oi,j

|Ni|
+

(
1− Oi,j

|Ni|

)
∗ Li,j

|Ni| −Oi,j
(2)

where Oi,j is the number of privacy norms of users i and j that
are the same, i.e., that have the same deontic modality and the same
scenario; and Li,j is the number of norms of users i and j that are
not the same but that have the most similar context among all of the
norms of i and j and have the same deontic modality. Note that this
is done from the point of view of user i.
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Figure 2. An example of norms for two users to show how the model calcu-
lates the similarity between user i and j using function su(·) (see Example 3).

Example 3. For users and their privacy norms shown in Fig. 2, we
have that Oi,j = 2, as there are two norms of them are the same
— i.e., they have the same modality for the same context. For the re-
maining norms in Ni, c5 is the most similar to c2. c8 is the most simi-
lar to c4. For these two pairs, only one has the same deontic modality,
which is F , therefore L = 1. So the final similarity sc(i, j) = 0.75.

3.2.2 Decision Making Process

We now focus on how the model makes a decision based on user and
context similarity. The steps to make a decision about a context c is
as follows — and as described in pseudocode in Algorithm 1:

Step 1) Same context from user or most similar users. In the first
step, the model tries to find whether any of the norms of the user
or the µ most similar users has that same context c (Algorithm 1
Lines 1–5). Note that the number of most similar users µ is a para-
mater of the model, which means how many of the most similar users
to the user will be considered. The similarity between the user and
other users is calculated using Definition 6 and updated when the
DiM runs as explained later on in Section 3.3. Note also that users
are considered in order of similarity, that is, the current user goes
first, then the most similar user to the current user, and so on, so the
algorithm stops as soon as the same context as c is found in user sim-
ilarity order. If the c context is found in one of the norms of the user
or their µ most similar users, then the deontic modality of the norm
that contains it is returned. If none of the norms of the user or the µ
most similar users relates to context c, then the next step is to find the
most similar context.

Step 2) Most similar context. As in the previous step, the norms of
the user and the µ most similar users are considered again, but this
time the model looks for the norm that has the context with the high-
est similarity to c (Algorithm 1 Lines 7–15). When it finds the norm
with the most similar context to c, then the model considers how high
that similarity is with respect to the context similarity threshold θ. If
the similarity between the context of the norm found and c is higher
or equal that the threshold θ, then the deontic modality returned will
be that of the norm found. This is to ensure that there is a minimum
context similarity — note that in the experimental section we con-
sider different values of θ and how they influence the performance



of the model. Otherwise, if the similarity between the context of the
norm found and c is lower than the threshold θ, then the model con-
siders all the norms with a context that is most similar to c for the user
and their µ most similar users. That is, the model ends up with one
norm per user — the one of that user that is most similar to c. Then,
it takes a majority vote considering the deontic modality of each of
these norms, so that the deontic modality that is the majority is then
returned as the decision to be taken (Algorithm 1 Lines 16–23).

Algorithm 1 Decision-making Process
Require: context c, knowledge base KB, main user a, array of most

µ similar users and a ordered by similarity users, context simi-
larity thresthold θ

Ensure: Decision on c
1: for each i = 0 to µ do
2: if ∃n ∈ Nusers[i] s.t. n.c = c then
3: return n.deontic
4: end if
5: end for
6: max← 0
7: for each i = 0 to µ do
8: for each n ∈ Nusers[i] do
9: sim = sc(c, n.c)

10: if sim > max then
11: max← sim
12: deontic← n.deontic
13: end if
14: end for
15: end for
16: if max < θ then
17: for each i = 0 to µ do
18: aux← argmax

n∈Nusers[i]

sc(c, n.c)

19: d[i]← aux.deontic
20: end for
21: deontic←MajorityV oting(d)
22: end if
23: return deontic

3.3 Dialogue Mechanism

When the model is to be used with a new user that is not in the KB
- e.g. when the PA is deployed after being purchased, it is infeasible
for the model to ask about every possible context, or even many con-
texts, as this would be overwhelming for the user. At the same time,
the model needs a minimum in order to be able to compute the sim-
ilarity of the current user with users in the KB. Therefore the model
incorporates a dialogue mechanism (DiM) that can interact with the
user for two main purposes: 1) help the PA to initialise to the current
user, and 2) let the user review the decisions made by the model. In
this section, we will detail how these processes work and how the
model will update its KB accordingly.

3.3.1 New User Initial Norms

The model is initialized when first deployed. The purpose of this is
to gain an initial understanding of the user and to set the stage for
the subsequent reasoning process but minimising the information re-
quired from the user. Here, it is crucial to get as much information
with as less intervention demanded from the user. In particular, ask-
ing about many contexts or context parameters would make it a bur-
den on the user. Instead, we focus on the parameters and their values

that can play a bigger role in ascertaining the similarity of the new
user with already existing users in the KB.

In order to do this, the model establishes an order between the
parameters and the values of the parameters. Specifically:

Definition 7 (Parameter order). Given the set of contextual integrity
parameters A, a parameter order is a partial order ⪯A, so that
(A,⪯A) is a partially ordered set.

In practice, ≺A can take different forms. One possible approach,
as we use in our experimental section, is to define the partial order
⪯A based on the influence exerted by each parameter in the set A on
the acceptability of the associated contexts. To achieve this, we can
employ statistical methods such as logistic regression, which allows
us to examine the relationship between the coefficients correspond-
ing to each parameter in an interpretable manner.

Definition 8 (Value order). Given a contextual integrity parameter
a ∈ A with domain D = {d1, . . . , dn}, a value order is a partial
order ⪯D , so that (D,⪯D) is a partially ordered set.

In practice, ⪯D can also take different forms. In this case, we fo-
cus on the values that seem to generate the most different decisions
in the KB. That is, the ones which may inform the model the most
to find similar users to the new user. We consider three different ap-
proaches to this, and compare them experimentally later: i) the values
of the parameter that leads to the most diverse set of decisions in the
KB - i.e., the ones where the differences between the users may be
more apparent and which can help the most to find similar/dissimilar
users; ii) the values of the parameter that are intrinsically known to
be different in practice (e.g. for data types, those that are perceived as
most or least sensitive), so that knowning about them from the new
user can also help in finding the most similar users in the KB; iii)
random ordering, which we mainly use as a baseline.

Once the parameter and value orders are established, then the
model can enquire the user for a limited number of parameters, ωA,
and a limited number of values, ωD , in the order established by ⪯A

and ⪯D . The responses are then used to create a set of norms that
would be added to the KB using the KB update process described in
3.1.

Example 4. Assuming that ωA = 2, ωD = 2, data_type ⪯A recip-
ient, and music ⪯D banking_details, then the model would ask the
user:

Q1: “With whom would you share banking details?”
Q2: “With whom would you share music?”

Finally, the last step of the initilization is to compute the µ most
similar users to the new user. This is done after the KB is updated
with the new norms created through the initialization and based on
the user similarity (Definition 6).

3.3.2 Decision Review

In addition to eliciting a number of initial norms with limited in-
teractions with the user, the DiM would also let the user review the
decisions the model has made. This is done at the frequency ϕ, which
can be selected by the user — note that we show in the experiments
the effect this frequency has on the quality of predictions made. The
reviewed decisions will then be added to the KB. If the user is not
satisfied with a particular case, the model will create a corresponding
new norm and add it to the KB too, which will be updated as shown
in the previous section. Finally, it is important to mention that af-
ter the review has happened, then the model recalculates the µ most
similar users based on the new norms added.



4 Evaluation
In this section, we describe the procedure we used to evaluate the
performance of our proposed model for privacy-enhanced personal
assistants PEM, the influence of the different parameters it has on its
performance, and how PEM compares to previous approaches form
the literature.

4.1 Dataset

We use a fully-anonymized and publicly-available dataset2 of real
privacy decisions, which was the result of a survey of PA users in
households [3]. The survey used a combination of various contextual
integrity parameters, including 15 data types, 15 types of recipients
(contains both internal and external recipients in the household), and
7 transmission principles, to create over a thousand different infor-
mation flow contexts.

The total number of participants was 1,739. Each of the partici-
pants in the study was randomly assigned around 180 different infor-
mation flow contexts. For each of the information flow contexts, each
participants was asked about the acceptability of that flow. Therefore,
the dataset contains a total of 292,478 decisions.

The dataset contains five types of relationships for the 15 different
types of recipients that we use for the recipient similarity (closest:
partner, parents, children; close: siblings, close family, housemates;
general user: visitor, housekeeper, visiting friends, neighbours; rele-
vant parties: PA provider, third-party skills; other parties: advertising
agencies, law enforcement agencies).

The dataset also contains the sensitivity (with 1 being the least sen-
sitive and 5 being the most sensitive) of the data type as perceived by
the user. We used this sensitivity straightaway to compute the simi-
larity between data types, and for one of the approaches for the ini-
tialization step of the DiM (the one where the partial order of data
types is defined according to their sensitivity).

Finally, the wk weights used for context similarity for each dif-
ferent parameter are set based on the regression analysis made in
the original publication of the dataset [3]. In particular, a ratio of
importance of 5:3:2 for recipient, data type and other parameters, re-
spectively, is derived from the coefficients of the regression model
reported on the paper.

4.2 Parameter Influence

Two significant parameters need to be determined for our model,
namely the number of similar users the model should retrieve (µ),
and the frequency at which the user chooses to review the decisions
made (ϕ). Examining the impact of fine-tuning the µ parameter on
the model’s performance can give us insight into whether a com-
prehensive KB, especially known extensive privacy norms of other
users, is essential for making appropriate privacy decisions as a PA.
Additionally, the effect of parameter ϕ on the model will indicate the
relationship of user participation with the model’s accuracy.

In addition, regarding the context similarity calculated in the de-
cision making mechanism, we set a threshold θ to check whether it
reaches sufficient similarity to make the final decision or instead us-
ing the majority vote algorithm. We decided to use 0.6, because: 1)
according to the calculation of context similarity, a number above 0.6
means that at least the data and recipients described in the context
are highly similar, 2) we also varied θ for some of the best com-
binations of ϕ and µ as shown later in this section. Regarding the

2 The dataset is publicly available from here: https://osf.io/63wsm/.

initialization, we follow the approach stated in Section 3.3.1, where
the partial order between parameters, ⪯A, is set based on the coeffi-
cients of logistic regression, that is, as stated in the previous section
for the wk weights. For ⪯D , which is the partial order between pa-
rameter values, we take the best approach of all the three considered,
which is just based on the sensitivity of the data — we show later in
this section how this fairs with respect to the other two alternatives.
Finally, and to minimize the need for user intervention, we set both
ωA, ωD to two, i.e., the model would only ask the user two questions
(see example in Section 3.3.1).

We start by randomly splitting the users in a ratio of 1:9, where the
10% (180 users in the whole dataset) are regarded as new users that
adopt PAs. They were evaluated on a one-by-one basis. Each experi-
ment was repeated 10 times to validate our model on 10 different and
completely random splits. The remaining 90% (n = 1559) users’ data
are regarded as the previous users, we create privacy norms of each
user and store them in the KB as the default.

Table 1 shows the average accuracy of each model in different pa-
rameter combinations. As can be seen from the results in Table 1, by
adjusting the number of similar users required and the frequency with
which users are asked to review the decisions made by the model,
the accuracy varies accordingly. When the number of similar users
that the model should find (µ) is fixed, it is clear that the accu-
racy of the model is higher when users’ views start to be involved
(ϕ = 0.2) than when the model relies only on context similarity
calculations to obtain the results (ϕ = 0). In addition, the accuracy
of the model improved as user involvement increased. In addition,
the model achieved the highest accuracy if users reviewed decisions
most frequently (every time). However, user reviews did not improve
too much on the accuracy of the model, for example, the accuracy
when ϕ = 1 is at most 0.042 better than when ϕ = 0. This means
that the DiM initialization step is highly effective in eliciting a small
number of norms that then help in terms of finding similar users and
contexts in the KB that are useful for an accurate decision.

An interesting finding is that, for the same review frequency (ϕ),
the results don’t seem to always improve as the number of similar
users increases (from µ = 1 to µ = 20). The model achieves the
best results for all review frequencies when µ is between 5 and 10.
This suggests that it is not necessary for the model to spend a lot of
time in finding a large number of similar users to use as references
for making decisions, i.e. only a few very similar users are enough to
get a good result.

Coming now back to the other parameters, Table 2 shows the in-
fluence of the parameter θ, that is the threshold used for whether
contexts are similar enough. It can be seen in the table that the influ-
ence of θ for some combinations of ϕ and µ confirms that a value of
θ = 0.6 is a good choice.

Regarding the three potential approaches for initializing the model
in Section 3.3.1, Table 3 shows the results when: i) only asking about
the parameters that lead to the most diverse set of decisions in the
KB - this is done by computing the standard deviation, so that higher
standard deviation is indicative of a greater dispersion in the data
(for this a different value for the number of contexts from the KB is
selected and represented by n in the Table); ii) asking about values
that are perceived differently by users, that are the most sensitive and
the least sensitive data types; and iii), randomly picking two data
types. The results confirm that prioritizing based on data sensitivity
works the best in this case.

https://osf.io/63wsm/


Table 1. Model accuracy with different parameter combinations. As mentioned in the Section 4.2, each experiment was repeated 10 times to validate the model
performance. Result of accuracy are rounded to three decimal places, and numbers in brackets are the standard deviation of the 10 folds. As the number of
information flows rated by each user in the original dataset is different, the number of contexts used for testing during the experiment varies, e.g. user 1 has 156
data (context) to make a decision on, while user 3 has 170 data. In the table, we have therefore also used an "≈" to indicate the approximate number of data to
be reviewed, rather than a definite number, i.e, around every 64 decisions when ϕ = 0.4.

Frequency
ϕ = 0 ϕ= 0.2 ϕ = 0.4 ϕ = 0.6 ϕ = 0.8 ϕ = 1

[No review] [≈Every 128] [≈Every 64] [≈ Every 32] [≈Every 16] [Every time]

No. µ =1 0.783 (0.05) 0.787 (0.08) 0.792 (0.06) 0.796 (0.04) 0.798 (0.08) 0.825 (0.06)
of µ =5 0.835 (0.04) 0.838 (0.06) 0.840 (0.06) 0.842 (0.05) 0.849 (0.03) 0.851 (0.06)
sim µ =10 0.814 (0.04) 0.816 (0.06) 0.825 (0.07) 0.826 (0.06) 0.830 (0.05) 0.834 (0.04)
users µ =15 0.818 (0.05) 0.819 (0.05) 0.821 (0.06) 0.827 (0.04) 0.833 (0.08) 0.835 (0.05)

µ = 20 0.811 (0.04) 0.814 (0.04) 0.818 (0.04) 0.824 (0.04) 0.827 (0.06) 0.830 (0.06)

Table 2. Experiments varying θ for combinations of µ and ϕ.

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Models
µ=5 ϕ=0 0.790 0.796 0.796 0.798 0.802 0.825 0.835 0.835 0.831 0.826 0.820
µ=5 ϕ=0.4 0.800 0.821 0.830 0.832 0.835 0.838 0.840 0.837 0.835 0.835 0.832
µ=5 ϕ=0.8 0.826 0.828 0.837 0.840 0.844 0.849 0.849 0.848 0.846 0.846 0.845

Table 3. Initialization approaches comparison (n is # cases from KB).

i) ii) iii)
n =5 n=10 n=15 n=20 n=30

µ=5 ϕ=0 0.736 0.752 0.798 0.802 0.820 0.835 0.732
µ=5 ϕ=0.4 0.752 0.784 0.812 0.816 0.832 0.840 0.740
µ=5 ϕ=0.8 0.766 0.810 0.822 0.825 0.837 0.849 0.753

4.3 Comparison with Other Approaches

Next, we compare our model with other interpretable and non-
interpretable approaches. We also consider a baseline, control con-
dition where the decision is random.

Regarding interpretable approaches, we compare with [51], which
uses a hybrid learning mechanism combining data mining to mine a
set of general rules that match the behavioural norms of most users,
and then reasons out the final decision based on these general norms
and user-specific feedback.

We also consider online learning methods that have a degree of
interpretability, such as the online learning versions of decision tree
and logistic regression. Online learning is a method of machine learn-
ing for data arriving in a sequential order, where a learner aims to
learn and update the best predictor for future data at every step. We
chose online learning because it can also start with an initial set of
data and then update the model as it gets more instances (e.g. by
a new user or after review), so it can therefore compare with what
our model does. Specifically, we considered two online learning ap-
proaches: Very Fast Decision Tree VFDT [18] with majority class in
leaves for classification, information gain as the heuristic measure,
and default parameters δ=10−7, nmin=200, τ = 0.05; and an in-
cremental logistic regression model using River [28] with the default
learning rate of 0.05 and a window size of 50.

Finally, we also compare with a black-box neural network ap-
proach. In particular, The Multilayer Perceptron (MLP) was built
where each attribute (datatype, recipient, purpose, and condition)
is first passed through its respective embedding layer to get 64-
dimensional embeddings. These embeddings were passed to 2 hidden
layers with 128 hidden units. The output layer is a Softmax layer for

classification with 2 classes (’Acceptable’ and ’Unacceptable’). The
optimizer used is the Stochastic Gradient Descent (SGD) optimizer.

For our model, we use the following combinations of parameters.
The first PEM1, with µ = 5, ϕ = 0.8; the second PEM2, with
µ = 5, ϕ = 0.4; and the third PEM3, with µ = 5, ϕ = 0. The
rest of parameters we leave them as in the previous section. This
is because the result of these parameters combinations give a relative
higher accuracy according to the experiments in the previous section,
and they are also representative of different review needs, because,
given that the process of reviewing decisions is carried out through
the dialogue mechanism, reviewing too many cases per time would
put extra burden on the user that they would face regularly from time
to time (as they can specify with ϕ).

Table 4. Performance comparison with other approaches.

Model Interpretable Accuracy

PEM1: Review every 16 cases ✓ 0.849
PEM2: Review every 64 cases ✓ 0.840
PEM3: No Review ✓ 0.835
RIVER incremental learning [28] ✓ 0.772
Zhan et al. [51] ✓ 0.741
Very fast decision tree (VFDT) [18] ✓ 0.706
Neural network (MLP) ✗ 0.680
Baseline (Random decision) ✗ 0.501

The result comparing the performance of different versions of
PEM with previous approaches in the literature can be seen in Ta-
ble 4. As expected, the baseline, random decision approach shows
an accuracy close to 0.5, and it is the worst of all the approaches
tried. When it comes to the other approaches, PEM, regardless of the
version is shows the best performance, with the added benefit of be-
ing interpretable. Interestingly, PEM works better than the other ap-
proaches we compared it with even in the case where the user would
not review any of the decisions made. This suggests that the initial-
ization step of the DiM is highly effective, that is, with only two
questions asked to the user, it can effectively find other similar users
that can help then the DeM make very accurate predictions. One can



also see that online machine learning approaches seem to work better
for this case than neural networks, which could be due to the dynamic
nature of the problem as well as to the fact that neural networks usu-
ally require a huge amount of data for accurate results, which, as in
this case, may not always be available.

5 Related Work

The burgeoning demand for privacy-preserving models that safe-
guard user data from unauthorized access has become a paramount
concern in contemporary data-driven societies [13, 26]. A particu-
larly promising approach to addressing this exigency entails the de-
velopment of sophisticated models capable of discerning individual
privacy predilections and subsequently inferring privacy decisions in
line with user expectations.

Previous researchers have primarily focused on leveraging exten-
sive datasets and machine learning algorithms to devise classifiers
adept at predicting privacy decisions [39, 45]. These classifiers are
frequently trained on textual or visual features, employing copious
amounts of user-labeled data to accurately predict categorizations
for test set data. Beyond machine learning, other more symbolic ap-
proaches, such as agent-based models, have been proposed for help-
ing manage privacy in social networks, from those focusing on indi-
vidual privacy recommendations and policy violations [25, 20, 22] to
those cases where many users are involved [21, 48, 46, 17, 30].

As the application scenario shifts from sharing photos on social
networks to the interaction between users and personal assistants,
and even as users manage their privacy needs across multiple de-
vices, context has become a focus for researchers [33, 19, 4]. This
notion serves as the impetus for Kokciyan et al. [23] to put forth a
situation-based model for privacy protection. The model examines
diverse contexts using natural language processing algorithms and
SVM classifiers to categorize contexts and scenarios. This approach
also utilizes user trust ratings for the scenarios and it appears to yield
a good result in terms of accuracy. Yet, it necessitates the trust rat-
ings provided by users for a considerable number of scenarios ini-
tially, which may not always be available, for instance in the dataset
used in this paper. It is also worth noting that the model’s predic-
tions are contingent upon the trustworthiness of the context, rather
than identifying the context that the user prefers to trust more or less.
Furthermore, owing to the employment of techniques like sentence
embeddings and SVM, the reasons behind their model’s decisions
may not always be easily traceable nor interpretable.

In another study related to our research, Amoros et al. [7] put forth
a method that utilizes a collaborative filtering technique to predict
user preferences in terms of the degree of acceptability of a particu-
lar information flow. It is crucial to note, however, that their focus lies
on predicting this specific degree of acceptability rather than a ‘bi-
nary decision’ of whether the assistant should share the information
or not. Therefore, the model may be useful for predicting preferences
but not directly for a PA to be able to make a decision about whether
data should be shared or not. This also means that it was impossible
for us to compare with this work, as we could not use their model and
implementation for our case study. In addition, the method proposed
in [7] does not consider aspects to optimize the initialization beyond
considering random questions to pose to the user, the input from the
user is considerable (they need information about many contexts),
which may become a burden on the user, and there is not a notion of
transparency or review of any decisions as they only focus on pre-
dicting preferences.

6 Conclusion
In this paper we presented a privacy-enhanced model for personal
assistants. The model has two main components, a dialogue mech-
anism and a decision making mechanism, that allow it to learn the
best information sharing decisions aligned with users’ privacy pref-
erences with minimal user intervention. It also offers a degree of
transparency by being interpretable and allowing the revision of the
decisions made. We showed experimentally that the model performs
considerably better than previous works.

In the future, we would like to build on the model’s interpretabil-
ity to engineer and automatically generate explanations for the rea-
sons of a specific decision made, as privacy explanations for assis-
tants in particular have been shown to assuage privacy concerns [37].
While the model is interpretable and one can inspect it to come up
with the most similar user or context that inspired the current deci-
sion as explained above, the problem of deciding exactly what in-
formation (e.g. about the user or the context) is presented to users,
how this information is presented, and the procedure to engage in
a query/answer dialogue with the user to explain the decisions as a
social process, as suggested in [27]) for designing explainable AI ,
is an exciting but non-trivial problem. One such possible approach
that could be used as an interesting starting point for explainability
is to apply argumentation, as done in [35, 49, 29, 31] for explaining
recommendation systems and case-based reasoning systems. Finally,
we focused on single user preferences, but future work could use
them as input to existing multiuser privacy models [30, 43, 41] or
norm-based access control with multiple users [47, 12].
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